Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets.
نویسندگان
چکیده
Taurine (TAU) supplementation increases insulin secretion in response to high glucose concentrations in rodent islets. This effect is probably due to an increase in Ca2+ handling by the islet cells. Here, we investigated the possible involvement of the cholinergic/phospholipase C (PLC) and protein kinase (PK) A pathways in this process. Adult mice were fed with 2% TAU in drinking water for 30 d. The mice were killed and pancreatic islets isolated by the collagenase method. Islets from TAU-supplemented mice showed higher insulin secretion in the presence of 8.3 mm-glucose, 100 μm-carbachol (Cch) and 1 mm-3-isobutyl-1-methyl-xanthine (IBMX), respectively. The increase in insulin secretion in response to Cch in TAU islets was accompanied by a higher intracellular Ca2+ mobilisation and PLCβ2 protein expression. The Ca2+ uptake was higher in TAU islets in the presence of 8.3 mm-glucose, but similar when the islets were challenged by glucose plus IBMX. TAU islets also showed an increase in the expression of PKAα protein. This protein may play a role in cation accumulation, since the amount of Ca2+ in these islets was significantly reduced by the PKA inhibitors: N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89) and PK inhibitor-(6-22)-amide (PKI). In conclusion, TAU supplementation increases insulin secretion in response to glucose, favouring both influx and internal mobilisation of Ca2+, and these effects seem to involve the activation of both PLC-inositol-1,4,5-trisphosphate and cAMP-PKA pathways.
منابع مشابه
Protein kinase C isoform specificity of cholinergic potentiation of glucose-induced pulsatile 5-HT/ insulin release from mouse pancreatic islets.
Thymeleatoxin (TMX), an activator of Ca2+-sensitive protein kinase C (cPKC) isoforms, was used to assess the PKC isoform specificity of cholinergic potentiation of glucose (11 mM)-induced pulsatile 5-HT/insulin release (PIR) from single mouse pancreatic islets. TMX (100 nM) and carbachol (Cch, 50 microM) enhanced PIR approximately 3-fold while reducing the underlying [Ca2+]i oscillations (durat...
متن کاملVasopressin potentiates corticotropin-releasing hormone-induced insulin release from mouse pancreatic β-cells
Arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH) have both been implicated in modulating insulin secretion from pancreatic beta-cells. In the present study, we investigated the insulin-secreting activities of AVP and CRH in wild-type and AVP VIb receptor knockout mice. Both neuropeptides stimulated insulin secretion from isolated mouse pancreatic islets. The response of isle...
متن کاملInhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: Protection by casein kinase 2 inhibitor
OBJECTIVES Chronic hyperlipidemia and hyperglycemia are characteristic features of type 2 diabetes (T2DM) that are thought to cause or contribute to β-cell dysfunction by "glucolipotoxicity." Previously we have shown that acute treatment of pancreatic islets with fatty acids (FA) decreases acetylcholine-potentiated insulin secretion. This acetylcholine response is mediated by M3 muscarinic rece...
متن کاملPhospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that ...
متن کاملSignal transduction in pancreatic beta-cells: regulation of insulin secretion by information flow in the phospholipase C/protein kinase C pathway.
The physiologic regulation of glucose-induced insulin secretion is dependent upon the activation of information flow in the phospholipase C (PLC)/protein kinase C (PKC) signal transduction system. In both rat and human pancreatic beta-cells, glucose has several time-dependent effects on secretory responsiveness including the regulation of biphasic insulin secretion, time-dependent potentiation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of nutrition
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2010